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I. INTRODUCTION

Electron-transport calculations in the linear-response re-
gime for a method referred to as the stationary Wigner func-
tion �SWF� method have been reported1 �as a shorthand we
refer to the presentation as BK�. In fact though, their paper is
a comment on the validity of a method introduced by
Delaney and Greer2 for treating open system boundary con-
ditions for correlated many-electron problems or many-
electron-correlated scattering �MECS�.2–4 For reasons that
will hopefully become clear, we refer to the method under
discussion as MECS.5 BK express several criticisms of the
MECS method, but their primary objection and conclusion is
“… the manner in which it” �open system boundary condi-
tions through the Wigner function� “was imposed in” �Ref.
2� “turns out to be inappropriate. It misses the fact that, in
accord with our physical understanding, the current flow is
due to an asymmetric injection of electrons from reservoirs
into the device, and that injected electrons are very well
described by Fermi distributions with different chemical po-
tentials. Moreover, as results from the analysis at the end of
Sec. VI” �of the BK paper�, “unfortunately there is no
simple remedy of the SWF method; the modification of the
boundary conditions in the spirit of” Delaney and Greer
“such as to account for a nonvanishing chemical-potential
shift does not yield the desired improvement.”

The conclusion in BK is reached after numerical calcula-
tions on a test system designed to model independent elec-
tron and correlated electron transport across a quantum dot.
As we will demonstrate, their conclusion incorrectly pre-
sumes an asymmetric injection of momentum is necessary to
describe reservoirs or electrodes in quasiequilibrium, and
likewise incorrectly assumes there is no chemical-potential
difference when applying the open system boundary condi-
tions with the MECS procedure. We will show that the
Wigner boundary conditions as expressed for MECS calcu-
lations, or equally in previous works,6 is consistent with the
application of a “nonvanishing chemical-potential shift.” The
authors in their paper appear to be confusing the application
of open boundary conditions when using either energy or
momentum distributions, and we will clarify that a relative
shift in energy to the reservoir energy distributions does not

imply a shift for the corresponding momentum distributions
emitted into a scattering region for simple models of elec-
trode behavior.

In Sec. II, we give a brief overview of the MECS method.
This is followed in Sec. III by introduction of a resolution to
the apparent conundrum expressed by BK: we analyze mo-
mentum distributions for electron reservoirs or electrodes
represented by Fermi-Dirac distributions and observe that the
momenta distributions do not change with applied voltage
bias or equivalently with a chemical-potential imbalance ap-
plied between electrodes. Asymmetric injection implied by
BKs conclusion in relation to the momentum distributions
from the electrodes is not consistent with a MECS or a Lan-
dauer description of electron transport. In Sec. IV, a calcula-
tion of conductance quantization for a system with the elec-
trodes represented by parabolic energy bands in one spatial
dimension is given using the MECS construction. To clearly
identify how the boundary conditions can be treated in this
case, electron interactions are neglected and the method re-
duces to a many-electron scattering problem for noninteract-
ing electrons. This approximation has the advantage of high-
lighting the simplicity of the MECS formulation as well as
clearly demonstrating its consistency with standard formula-
tions of electron scattering, while avoiding issues related to
specific numerical approximations or questions related to
specific electronic structure implementations. The boundary
conditions as formulated in MECS applied to the model re-
produces the well-known result of conductance quantization.

II. A BRIEF INTRODUCTION TO THE MECS
APPROACH

The proposal behind MECS as introduced in Ref. 2 is to
variationally constrain a many-electron wave function on a
scattering region, or specifically, the many-electron density
matrix �DM�

�N = ��N���N� , �1�

in a manner satisfying open system boundary equations.6 As
open system boundary conditions are commonly expressed
in the language of single-particle theories, it is useful to con-

PHYSICAL REVIEW B 82, 087301 �2010�

1098-0121/2010/82�8�/087301�8� ©2010 The American Physical Society087301-1

http://dx.doi.org/10.1103/PhysRevB.78.115315
http://dx.doi.org/10.1103/PhysRevB.82.087301


sider the Wigner transform of the one-electron reduced DM
�RDM� associated with the many-electron DM

�N → �1 with Tr �1 = N ,

fW�q,p� = �
−�

+�

dr exp�− ipr/���1�q − r/2;q + r/2� , �2�

where the transform is written for one spatial dimension r
and 	p ,q
 are Wigner phase space variables. The MECS ap-
proach is the recognition that open system boundary condi-
tions can be applied to correlated systems through the one-
body RDM through use of the Wigner transform, allowing
appropriate conditions to be enforced at the boundaries of a
scattering region. In practice, the Wigner distribution func-
tion is used to constrain the momenta flow out of the electron
reservoirs and into the scattering region. The momentum ex-
pectation value can be written as

�p� =
1

2��
�

−�

+�

dp dq p fW�q,p� . �3�

Equation �3� highlights the analogy of the Wigner quantum
phase space distribution to a classical probability distribution
function. However, unlike a classical probability distribution
and as is well known,6–9 the Wigner function is not every-
where positive as a consequence of the Heisenberg
momentum-position uncertainty principle. However, in re-
gions where fW behaves approximately classically, the
Wigner phase representation allows us to assign meaning to
phrases such as “electrons in the left or right reservoir,” “mo-
mentum of an electron emitted from a reservoir,” or “a res-
ervoir is locally in equilibrium.” Within this context, the net
momentum flow out of the left electrode is approximated as

pl =
1

2��
�

0

+�

dp p fW�ql,p� �4�

and similarly for the right electrode

pr =
1

2��
�

−�

0

dp p fW�qr,p� , �5�

where ql and qr are appropriately chosen. Clearly this ap-
proximation is dependent on how well fW describes a classi-
cal probability distribution function. For metal electrodes,
where electrons can be well approximated by the free-
electron model, this assumption is usually justified. It is also
worth noting that the Wigner reduced one-particle function,
as a function of energy defined in the Wigner phase space,
tends rapidly toward the Fermi-Dirac distribution with in-
creasing number of particles in a confining potential.10

In our calculations to date, three-dimensional electrodes
are considered.2,4,11,12 To simplify the analysis, fW is inte-
grated over the in-plane coordinates within a cross-section of
the electrodes. The net momentum flow out of both elec-
trodes is constrained to this equilibrium �V=0� value.2,13 To
consider this procedure further, we examine models of elec-
trode behavior in quantum transport theories.

III. FERMI-DIRAC RESERVOIR ENERGY AND
MOMENTUM DISTRIBUTIONS UNDER APPLIED

VOLTAGE AT ZERO TEMPERATURE

In Fig. 1�a�, a pictorial representation of open system
boundary conditions is shown for electrodes described by
two parabolic energy bands �free electrons with effective
mass m� in one dimension and for a Fermi-Dirac distribution
at temperature T=0�. The energy levels �k= ��k�2

2m� in the left
and right electrodes are filled to the Fermi energy �F; simi-
larly momentum states are filled to the Fermi momentum kF.
In Fig. 1�b�, a potential-energy difference is introduced be-
tween the left and right electrodes shifting the bottom of the
energy bands with respect to each other by an amount de-
noted eV. This results in a shift to the energies in the right
electrode by ��k�2

2m� → ��k�2

2m� +eV �a symmetric split in the volt-
age between electrodes does not alter our discussion�. The
shift of the right electrode energy states describes the
chemical-potential imbalance between the reservoirs and will
necessarily be accompanied by a voltage drop, or equiva-
lently an electric field across the scattering region. In Fig.
1�c�, the momentum distributions corresponding to Fermi-
Dirac energy distributions with and without applied voltage
in Figs. 1�a� and 1�b�, respectively, are shown. The same
momentum distributions are obtained with or without appli-
cation of a voltage difference between the left and right elec-
trodes. It also follows that similar considerations hold for the
case of nonzero temperature. It is important to highlight at
this point that the MECS proposal2 for treating quantum
electronic transport is completely compatible with this pic-
ture of boundary conditions on the electrode regions.

When working with the one-electron RDM obtained from
a correlated N-electron density matrix, it is not possible to
unambiguously define single-electron energies. It is therefore
of advantage to constrain the total incoming momentum to
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FIG. 1. The Fermi-Dirac energy dispersions for incoming elec-
trons from two electrodes described by parabolic bands. �a� With no
voltage difference between the electrodes, �b� with applied voltage.
�c� The corresponding momentum distribution functions for �a� and
�b�. Note that there is no difference to the momentum distributions
with application of voltage.
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model the action of the electrodes while determining the cor-
related many-electron density matrix on the scattering re-
gion. As the incoming momentum distributions are the same
for electrodes in equilibrium or in local equilibrium, con-
straining the net momentum flow from the electrodes is not
sufficient to drive the electrodes away from equilibrium with
respect to each other. It is standard practice in many electron-
transport methods, including nonequilibrium Green’s func-
tion techniques, to introduce an external electric field to
model the action of the electrodes on the scattering region.
To understand the role of the external field in transport cal-
culations, it is useful to consider the sketch of two metallic
electrodes as presented in Fig. 2. A simple band or indepen-
dent particle model is a remarkably good approximation to
the electronic structure of metals allowing our discussion of
the parabolic bands to be extended directly to consideration
of realistic models of metal electrodes. Within Fig. 2, the fact
that the two electrodes are not in equilibrium with respect to
one another is denoted by the different left �L and right �R
chemical potentials. The chemical-potential imbalance intro-
duces a difference in the charge density between the left and
right electrodes. However, electrostatic screening is efficient
in metals and for the quasiequilibrium regions of the elec-
trodes, the electric field is zero within the electrodes or
equivalently, the voltage is constant within a short distance
into the metal electrodes. Thus all of the voltage drop is
across the scattering region plus the screening length into the
electrodes. Typical screening lengths in metals are of the
order of 0.1 nm. Hence any charge imbalance in the elec-
trodes resides at the surface of the metal and the opposite
polarity of the surface-induced charges between the elec-
trodes gives rise to an electric field across the region situated
between the electrodes; a situation depicted in Fig. 2 as field
lines between the electrode surfaces. In most transport calcu-
lations, charges in the electrode and scattering regions are
solved for self-consistently allowing a molecular tunnel junc-
tion to polarize in response to this external electric field. In
MECS, charges rearrange due to minimization of the energy
with respect to the many-electron wave function subject to

the open system boundary conditions and the external elec-
tric field. The voltage can then be extracted as the combined
field arising from the applied field and polarized charge dis-
tribution in the scattering region; see, for example.14

The model of electrode behavior we are describing is con-
sistent with other formulations of quantum electronic trans-
port. In this regard, it is worthwhile to mention the work of
McLennan et al.15 and, in particular, their Fig. 3. As pointed
out by the authors, a change in the chemical potential in the
electrodes is accompanied by a shift in the electrostatic volt-
age. In a metal, the case considered for MECS calculations to
date, the chemical potential and electrostatic voltage changes
are nearly identical and the effect of the applied voltage can
be accounted for as a shift in the electrode bands with respect
to each other. In the linear-response regime, the shift due to
the electrostatic voltage is sometimes neglected15 but for-
mally should be included as indicated schematically in our
Fig. 1 and in McLennan et al.’s Fig. 3.

The point which we would like to emphasize is that the
presence of voltage drop on the scattering regions ensures
that the single-electron energies in the electrodes are shifted
by the applied voltage but does not alter the momentum dis-
tributions emitted from the electrodes. The conclusion in BK
that an asymmetric injection of electrons is needed to obtain
a current is incorrect, if injection refers to incoming electron
momentum distributions, i.e., “current injected” from the
electrodes. What is required is asymmetric scattering for in-
jected electrons, and this is provided for by the asymmetric
electric field profile or equivalently, the chemical-potential
imbalance generated across a molecular tunnel junction.

IV. APPLICATION OF MECS TO A SINGLE-PARTICLE
MODEL

A. Boundary conditions

MECS was originally formulated for interacting many-
electron systems with a Hamiltonian operator given as

HN = T + V1 + V2, �6�

where T is the sum of N one-electron kinetic-energy opera-
tors, V1 is the sum of the external one-electron potentials,
and V2 is the sum of electron-electron interactions on the
scattering region.2 As mentioned, with the MECS approach
an external electric field can be applied to model the
chemical-potential imbalance between the reservoirs and this
term may be included into V1. To arrive at a single-particle
model to be used in our analysis, the electron-electron inter-
actions are switched off and, for simplicity, all other external
potentials other than the chemical-potential imbalance be-
tween the electrodes are also switched off. As electron-
electron interactions are not treated, the resulting many-
electron system consists of N noninteracting electrons each
described by a single-electron Hamiltonian operator. Of
course, there is no advantage to apply the MECS method to
a noninteracting electron model, but we demonstrate in this
case that the MECS method is consistent with the usual for-
mulation of quantum-mechanical scattering.
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FIG. 2. A simple model of the action of two electrodes in gen-
erating an electric field. The application of a chemical potential
difference results in surface charges generating an electric field be-
tween the electrodes.
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We consider a scattering region of length �−L /2,L /2� in
the absence of a potential and write plane-wave eigenfunc-
tions on the scattering region

�n�x� =
1
�L

exp�iknx� ,

kn = 2�n/L; n = 0,1,2,3, . . . �7�

Left going and right going states are filled to a Fermi mo-
mentum kF=nF	k. In the absence of the application of a
voltage, the current is given simply as

I�V = 0� = −
e�

m�L
�

nl=1

nF

knl
− 

nr=1

nF

knr� = 0, �8�

where nl and nr are states associated with the left and right
electrodes, respectively. In one dimension, the electron cur-
rent and current density are equivalent, and the factor 1

L in-
dicates our choice of normalization. The model consists of
left and right propagating plane-wave states with the net cur-
rent summing to zero. In this representation, the density ma-
trix is diagonal with nn,n�=
nn� for both n ,n��nF and nn,n�
=0 otherwise. This allows the density matrix to be con-
structed from the first nF states incoming from the left and
right to be written as

�0�x,x�� =
1

L
+

1

L

n=1

nF

exp�ikn�x − x���

+
1

L

n=1

nF

exp�− ikn�x − x��� . �9�

Introducing the Wigner transformation term by term, the re-
sulting Wigner distribution function is readily found to be

f0�q,p� =
2�

L

�p� +

2�

L

n=1

nF


�p − �kn� +
2�

L

n=1

nF


�p + �kn�

�10�

with 
�p� the Dirac delta function. Strictly speaking, as we
consider wave functions that are only nonzero on the scatter-
ing region, the delta functions should be replaced by sinc
functions of the form: 1

��k�p/��sin��k� p /��L /2� that ap-
proach delta functions for large L. In the case of large L, the
model as described corresponds to Fig. 1�a�.

Next, a potential step is introduced at x=0 to drive the
system out of equilibrium and allow for a net current flow.
The exact form of the scattering potential is not critical to the
following argument, but for ease of presentation we assume
that the potential is varied over a small region lL allowing
us to approximate the difference between the left and right

fψψ*(�L/4,p/ħ)

fψψ*(�L/4,p/ħ)

a)

b)

fψψ*(+L/4,p/ħ)

fψψ*(+L/4,p/ħ)

c)

d)

k (a u ) k (a u ). . . .

k (a u ) k (a u ). . . .

FIG. 3. �Color online� The Wigner function calculated with scattering wave functions defined on a region �−L /2,+L /2� and with
normalization chosen such that a completely occupied state is with f =1. �a� The integrated Wigner function calculated at ql=−L /4 for a
region of length L=2 nm with kF=12 nm−1=0.635 a.u �corresponding to gold electrodes� with V=0 �blue�, 1 �purple�, and 2 V �green� �this
sequence corresponds to the innermost to outermost curves on the left hand side�. �b� Same as in �a� but with L=20 nm. �c� The integrated
Wigner function calculated at qr=+L /4, otherwise the same as in �a� but with the voltage sequence corresponding to outermost to innermost
on the right hand side of the plot. �d� Same as in �c� but with L=20 nm.
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electrodes as a potential-energy step. For this case, the sta-
tionary solutions to the one-electron Schrödinger equation
may be written in scattering form

�n�x� = exp�iknx� + r exp�− iknx� x � 0,

�n�x� = t exp�ikn�x� x � 0. �11�

For spatially varying potentials centered at x=0 satisfying l
L, the asymptotic wave functions will likewise satisfy the
scattering form and the following development remains valid
with minor modification. By implication, the energies for
electrons entering the scattering region from the right are
shifted by an amount given by the scattering potential height
��k�2

2m� → ��k�2

2m� +eV. However the incoming momenta, as previ-
ously discussed, are unchanged. We apply a voltage greater
than the level spacings at the bottom of the reservoir conduc-
tion band where the energy density of states is greatest. With
the introduction of the potential, the model for electrons en-
tering from the left is the one-dimensional quantum-
mechanical scattering problem with a step-up potential. For
electrons entering the scattering region from the right, the
problem is for an electron incident on a step-down potential.
This is shown schematically in Fig. 1�b� and the solution is
well known for both cases and may be expressed in terms of
the transmission coefficients T. In this case, we can write the
current for the system as

I�V � 0� = −
e�

m�L

n=1

nF

�f l�kn�Tl�kn;V�kn − fr�kn�Tr�kn;V�kn�

�12�

with Tl ,Tr the transmission coefficients for electrons incom-
ing from the left and right, respectively. Note that f l,r�kn
�kF�=1 and f l,r�kn�kF�=0 for our example. Time-reversal
symmetry requires that the left and right transmission func-
tions for a given single-particle energy � are equal Tl���
=Tr���, but the energies for the left and right states of equal
momentum are not equal in the presence of a voltage. This is
seen by rewriting the transmission as functions of energy

I�V � 0� = −
e�

m�L

n=1

nF �Tl� ��kn�2

2m�
;V�

− Tr� ��kn�2

2m�
+ eV;V��kn, �13�

resulting in a net current flow with application of voltage.
It can be shown that the Wigner transform of the reduced

density matrix constructed from the scattering wave func-
tions satisfies the same open system boundary conditions as
the zero-voltage �plane-wave states� solution in the large L
limit and as we will demonstrate, approximately for finite
values of L typically used in numerical studies. The electron
reservoirs in this case are the regions outside of the central
scattering site. The density matrix with V�0 remains diag-
onal and we can again consider the Wigner transform term
by term

fn,n�q,p� = �
−�

+�

dr exp�− ipr/���n�q +
r

2
��n

��q −
r

2
� ,

�14�

where now �n are wave functions of the scattering form Eq.
�11� on �−L /2,L /2�. We consider a point to the left of the
scattering region ql=−L /4 and find for the Wigner distribu-
tion function

fn,n�ql,p� =
2�

L

�p − �kn� +

2�

L
r2
�p + �kn�

+
4�

L
r cos�2knq�
�p� , �15�

where �Eq. �15�� r is the amplitude of the reflected compo-
nent of the scattering wave function and the normalization is
fixed to that of an incoming plane wave. The Wigner phase
space density at ql consists of the incoming momentum term
at p=+�kn, the reflected momentum term at p=−�kn, and a
zero-mode term p=0 as discussed in Ref. 7. The Wigner
transform is calculated at �L /4, in the middle of the
electrodes, to avoid coupling to the regions outside of
�−L /2,L /2� and to avoid interaction between the electrodes
as voltage is applied. If the point where the Wigner function
is to be constrained is too close to the boundaries �L /2, the
density matrix, as can be seen from the argument of the
Wigner transform Eq. �14� �n��L /2+ r

2 ��n
���L /2− r

2 �, will
be zero. The vanishing of the density matrix in this case is an
artifact arising from truncating the wave functions outside of
the scattering region. If the point where the Wigner function
is to be constrained is calculated too close to the scattering
region, as voltage is applied the incident and reflected com-
ponents of the scattering wave function mix with the trans-
mitted component, or in other words the two electrodes
couple. To avoid coupling the electrodes, the Wigner func-
tion should be calculated within each electrode, but in a re-
gion avoiding interaction between the electrodes as a voltage
is applied.

Again, as for Eq. �10�, for finite L the delta functions in
Eq. �15� should be replaced by sinc functions of the form

1
��k�p/��sin��k� p /��L /2�. For large L when the sinc func-
tions well approximate delta functions, Eqs. �10� and �15�
satisfy the same condition for incoming momenta states. For
finite L, the sinc functions centered at �k ,0 can overlap and
the incoming momentum states can differ between the V=0
�plane-wave� and V�0 �scattering� states. In Fig. 3�a�, we
have calculated the Wigner function for a set of plane-wave
states incoming from the left and the right with a Fermi
momentum kF chosen to correspond to that of gold elec-
trodes and a scattering region of L=2 nm. A step potential of
V=0, 1, and 2 V is applied in the center of the scattering
region and the resulting Wigner functions are displayed at
ql=−L /4 for each value of the applied voltage. These param-
eters have been chosen to compare our analysis to typical
calculations for molecular electronics and, in particular, the
calculation presented in Ref. 2. As voltage is applied, the
incoming electron distributions are not exactly equal to the
V=0 distribution but agreement is very close particularly for
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states near kF which provide the largest contributions to the
current. The outflow of momentum is changed as a result of
the scattering off the potential barrier and this difference be-
tween the equilibrium �V=0� and nonequilibrium distribu-
tions �V�0� reflects the difference in chemical potential be-
tween the electrodes. In Fig. 3�b�, the length of the region is
taken to be L=20 nm and as seen the incoming momentum
distributions, even with wave functions only defined on the
region �−L /2,+L /2�, remain essentially the same for V=0,
1, and 2 V. The momentum distribution drops sharply at kF
well approximating the distribution shown in Fig. 1�c�. In
Figs. 3�c� and 3�d�, the Wigner distribution at qr=+L /4 for
L=2 nm and 20 nm, respectively, is given. In subsequent
discussion, we assume a large value for L, but as Fig. 3
indicates, the considerations apply well to electrode lengths
as small as 1 nm. Also, the lowest nF states have been occu-
pied corresponding to a T=0 distribution. However, there is
nothing in the analysis that precludes the V=0 solution to be
set to a thermal distribution and to constrain the solutions to
the thermally occupied incoming states as voltage is applied.
If the scattering states with V�0 are constrained to satisfy
the Wigner function determined from the V=0 wave func-
tions, the correct stationary solution to the one electron
Hamiltonian in the presence of a potential on the scattering
region will be obtained in the large L limit and approxi-
mately for smaller values of L. Indeed it is observed that in
the single-particle case, constraining the incoming momen-
tum inflow via the Wigner function implies solving the one-
electron Schrödinger equation for a specific value of incom-
ing momentum p=�kn, and otherwise results in the standard
textbook presentation of one-dimensional quantum-
mechanical scattering.

B. A transport calculation with the single-particle model

We again consider introduction of a small potential step to
shift the energies of the states incoming from the right, as
depicted in Fig. 1�b�. As voltage is applied, electrons incom-
ing from the left with energies such that �nL

/e�V will see a
potential step up. The number of these states is given ap-
proximately as

nV � �2em�V/�	k . �16�

For states incoming from the left, we approximate Tl�0 for
incoming energies less than the potential step height and Tl
�1 for energies greater than the potential step height. In
contrast, electrons incoming from the right see a step-down
potential and we approximate Tr�1 for all electrons incom-
ing from the right. The electron current can then be estimated
as

I � −
e�

m�L� 
nl=nV

nF

knl
− 

nr=1

nF

knr� �
e�

m�L

n=1

nV

kn �
e�

m�L

n=1

nV

n	k

�17�

with the convention that current flow is opposite the direc-
tion of electron flow. For small 	k and large nF �these are
standard conditions for derivation of the Landauer formula�,
we have

I →
e�

m�L
	k�

0

nV

ndn =
e2

h
V . �18�

The current and voltage yield a conductance g0=e2 /h and
the Landauer result for conductance quantization is obtained.

This derivation seems odd, as it appears that it is not the
states at the Fermi level that contribute to the current, but
states low in energy �or momentum� that yield current. The
situation can be summarized in Fig. 4. In Fig. 4�a�, the prod-
uct of the momentum occupation and the transmission coef-
ficients for left and right states are given, whereas in Fig.
4�b�, the corresponding product of the energy-level occupa-
tions and transmission coefficients are given. In Fig. 4�a�, it
appears that the currents arise from low-momentum states, in
Fig. 4�b�, currents appear to arise from energy states at �F.
However, there is no contradiction. If the currents from mo-
mentum states with energies ���F are summed, the currents
associated with states below �F cancel.

The current incoming from the left can be rewritten as an
integral over energy

Il = −
e2

h
�

eV

�F

d� , �19�

using �= ��k�2

2m� and d�= �2

m� kdk. Similarly the current from the

right is rewritten but now with �= ��k�2

2m� +eV

Ir =
e2

h
�

eV

�F+eV

d� . �20�

The resulting current is

I =
e2

h
�

�F

�F+eV

d� =
e2

h
V , �21�

which will be recognized as the more familiar form for ex-
pressing conductance quantization. The physics is consistent
whether calculating currents using the momentum distribu-
tions �Fig. 4�a�� or the energy distributions �Fig. 4�b��.
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FIG. 4. �a� The momentum distributions corresponding to the
model of Sec. IV. �b� The energy distributions for the model of Sec.
IV. Both distributions may be used to calculated conductance
quantization.
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V. DISCUSSION

The first point of our presentation is that the MECS ap-
proach is consistent with a Landauer description of electron
transport. BKs conclusion ascribes the failure of their calcu-
lations for a single particle and a correlated model to the
MECS formulation of boundary conditions. The analysis of
Sec. III highlights this is not the case; based on an analytical
model, the use of the MECS formulation is consistent with a
scattering approach to electron transport. The advantage of
an analysis based upon an analytical model is that it avoids
issues associated with linear-response approximations, per-
turbation theory, variational methods in a finite basis, specific
implementations of electronic structure, or other numerical
approximations, thereby allowing a clear focus on the physi-
cal assumptions made when using the method. In Sec. IV, we
continue in this vein and demonstrate how the MECS formu-
lation reproduces conductance quantization in a system of
noninteracting electrons scattering off a potential barrier.

We would also like to touch upon some formal points
raised in the BK work. The authors criticize the use of a
configuration expansion to describe transport problems. We
note that it is shown in several works that a properly de-
signed variational calculation can provide accurate properties
governing electron transport such as electronic spectra16 with
compact expansion vectors.17 The variational structure of
MECS calculations performed to date has also been noted by
BK and we believe misinterpreted. Using a variational ap-
proximation to the wave function does not result in an exact
eigenfunction of the system Hamiltonian but rather the best
approximation using the functional ���H��� / �� ��� for the
approximating function ��� and subject to the application of
the constraint conditions. As a consequence, it is well known
that integrated quantities such as the energy may be better
approximated compared to local properties such as spin den-
sity or electron current density. Hence in previous MECS
calculations the possibility to introduce constraints to enforce
current conservation on a scattering region was introduced.
However, this is a numerical feature related to the variational
nature of the calculations and the application of the open
system boundary conditions does not imply the violation of
current conservation contrary to a supposition in BK. We
have already noted the origin of the current variations from
variational calculations. It also well known that, for example,
perturbation theories do not conserve many physically con-
served quantities, including electronic current. Considerable
care is needed in defining finite expansions that are current
conserving.18 Hence we maintain the BK have incorrectly
ascribed to MECS the current oscillations they calculate in a

tight-binding model within linear response to the boundary
conditions applied within MECS.

As a final point, the application of the Wigner constraints
in the case of a one-dimensional problem as we have intro-
duced and as attempted for a tight-binding linear chain in BK
requires particular care in the following sense. Formally, for
a free-electron model of metallic electrodes �a reasonable
assumption�, the density matrix decays as 1 / �x−x���d+1�/2

with d the spatial dimension of the electrode. How one de-
cides to treat this long-range behavior influences the bound-
ary conditions. Another way to express this is that the density
matrix does not satisfy Kohn’s principle of “nearsightedness”
for these examples,19 whereas in three-dimensional models
of metal electrodes2,4,11,12 the density matrix decays within
typically less than 0.5 nm �Ref. 20� thereby greatly simpli-
fying the introduction of open system boundary conditions
through use of the Wigner function. The decay of the density
matrix in three-dimensional metallic electrodes helps in the
calculation of the equilibrium �V=0� Wigner function with
small explicit electrode regions, without coupling between
the electrodes or coupling the electrode equilibrium regions
to the scattering region.

VI. CONCLUSION

We have shown that the MECS boundary conditions and
introduction of a chemical-potential imbalance between elec-
trodes reduces to the correct single-particle limit, and hence
the claim in BK for the failure of the MECS boundary con-
ditions to reproduce conductance quantization is incorrect.
The model analysis provided reveals that a failure of a cal-
culation attempting to apply the boundary conditions using
the Wigner function for momentum distributions for this or
related models cannot be attributed to a failure of the MECS
formulation.

We have also provided an analysis on both the formula-
tion of many-electron scattering using the Wigner function
boundary conditions and touched upon issues related to the
numerical implementation of the model. We will present a
similar analysis on more realistic models of atomic and mo-
lecular scale systems and consider the effect of various nu-
merical approximations on MECS transport calculations in
future work.
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